Approximate solution of the Cauchy problem for a first-order integrodifferential equation with solution derivative memory
نویسندگان
چکیده
We consider the Cauchy problem for a first-order evolution equation with memory in finite-dimensional Hilbert space when integral term is related to time derivative of solution. The main problems approximate solution such nonlocal are due necessity work all previous moments. propose transformation integrodifferential system local evolutionary equations. use approach known theory Volterra equations an approximation difference kernel by sum exponents. formulate weakly coupled additional ordinary differential have given estimates stability initial data and right-hand side corresponding problem. primary attention paid constructing investigating two-level schemes, which convenient computational implementation. numerical two-dimensional model first order, Laplace operator conditions dependence on spatial variables, presented.
منابع مشابه
Numerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملApproximate solution of fourth order differential equation in Neumann problem
Generalized solution on Neumann problem of the fourth order ordinary differential equation in space $W^2_alpha(0,b)$ has been discussed, we obtain the condition on B.V.P when the solution is in classical form. Formulation of Quintic Spline Function has been derived and the consistency relations are given.Numerical method,based on Quintic spline approximation has been developed. Spline solution ...
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملnumerical solution for boundary value problem of fractional order with approximate integral and derivative
approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. in this paper with central difference approximation and newton cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. three...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2023
ISSN: ['0377-0427', '1879-1778', '0771-050X']
DOI: https://doi.org/10.1016/j.cam.2022.114887